Diffusion Operator and Spectral Analysis for Directed Hypergraph Laplacian

11/05/2017
by   T-H. Hubert Chan, et al.
0

In spectral graph theory, the Cheeger's inequality gives upper and lower bounds of edge expansion in normal graphs in terms of the second eigenvalue of the graph's Laplacian operator. Recently this inequality has been extended to undirected hypergraphs and directed normal graphs via a non-linear operator associated with a diffusion process in the underlying graph. In this work, we develop a unifying framework for defining a diffusion operator on a directed hypergraph with stationary vertices, which is general enough for the following two applications. 1. Cheeger's inequality for directed hyperedge expansion. 2. Quadratic optimization with stationary vertices in the context of semi-supervised learning. Despite the crucial role of the diffusion process in spectral analysis, previous works have not formally established the existence of the corresponding diffusion processes. In this work, we give a proof framework that can indeed show that such diffusion processes are well-defined. In the first application, we use the spectral properties of the diffusion operator to achieve the Cheeger's inequality for directed hyperedge expansion. In the second application, the diffusion operator can be interpreted as giving a continuous analog to the subgradient method, which moves the feasible solution in discrete steps towards an optimal solution.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
04/30/2018

Generalizing the Hypergraph Laplacian via a Diffusion Process with Mediators

In a recent breakthrough STOC 2015 paper, a continuous diffusion process...
research
01/24/2020

A continuum limit for the PageRank algorithm

Semi-supervised and unsupervised machine learning methods often rely on ...
research
07/25/2018

Diffusion and consensus on weakly connected directed graphs

Let G be a weakly connected directed graph with asymmetric graph Laplaci...
research
08/25/2016

Go With the Flow, on Jupiter and Snow. Coherence From Video Data without Trajectories

Viewing a data set such as the clouds of Jupiter, coherence is readily a...
research
11/17/2022

Cheeger Inequalities for Directed Graphs and Hypergraphs Using Reweighted Eigenvalues

We derive Cheeger inequalities for directed graphs and hypergraphs using...
research
11/09/2016

On the Diffusion Geometry of Graph Laplacians and Applications

We study directed, weighted graphs G=(V,E) and consider the (not necessa...
research
07/20/2023

Hypergraph Diffusions and Resolvents for Norm-Based Hypergraph Laplacians

The development of simple and fast hypergraph spectral methods has been ...

Please sign up or login with your details

Forgot password? Click here to reset