Diffusion Models For Stronger Face Morphing Attacks
Face morphing attacks seek to deceive a Face Recognition (FR) system by presenting a morphed image consisting of the biometric qualities from two different identities with the aim of triggering a false acceptance with one of the two identities, thereby presenting a significant threat to biometric systems. The success of a morphing attack is dependent on the ability of the morphed image to represent the biometric characteristics of both identities that were used to create the image. We present a novel morphing attack that uses a Diffusion-based architecture to improve the visual fidelity of the image and improve the ability of the morphing attack to represent characteristics from both identities. We demonstrate the high fidelity of the proposed attack by evaluating its visual fidelity via the Frechet Inception Distance. Extensive experiments are conducted to measure the vulnerability of FR systems to the proposed attack. The proposed attack is compared to two state-of-the-art GAN-based morphing attacks along with two Landmark-based attacks. The ability of a morphing attack detector to detect the proposed attack is measured and compared against the other attacks. Additionally, a novel metric to measure the relative strength between morphing attacks is introduced and evaluated.
READ FULL TEXT