Diffusion Maps for Embedded Manifolds with Boundary with Applications to PDEs
Given only a collection of points sampled from a Riemannian manifold embedded in a Euclidean space, in this paper we propose a new method to solve elliptic partial differential equations (PDEs) supplemented with boundary conditions. Notice that the construction of triangulations on unknown manifolds can be both difficult and expensive, both in terms of computational and data requirements, our goal is to solve these problems without such constructions. Instead, we rely only on using the sample points to define quadrature formulas on the unknown manifold. Our main tool is the diffusion maps algorithm. We re-analyze this well-known method in a weak (variational) sense. The latter reduces the smoothness requirements on the underlying functions which is crucial to approximating weak solutions to PDEs. As a by-product, we also provide a rigorous justification of the well-known relationship between diffusion maps and the Neumann eigenvalue problems. We then use a recently developed method of estimating the distance to boundary function (notice that the boundary location is assumed to be unknown and must be estimated from data) in order to correct the boundary error term in the diffusion maps construction. Finally, using this estimated distance, we illustrate how to impose Dirichlet, Neumann, and mixed boundary conditions for some common PDEs based on the Laplacian. Several numerical examples confirm our theoretical findings.
READ FULL TEXT