Diffusion Denoised Smoothing for Certified and Adversarial Robust Out-Of-Distribution Detection

03/27/2023
by   Nicola Franco, et al.
0

As the use of machine learning continues to expand, the importance of ensuring its safety cannot be overstated. A key concern in this regard is the ability to identify whether a given sample is from the training distribution, or is an "Out-Of-Distribution" (OOD) sample. In addition, adversaries can manipulate OOD samples in ways that lead a classifier to make a confident prediction. In this study, we present a novel approach for certifying the robustness of OOD detection within a ℓ_2-norm around the input, regardless of network architecture and without the need for specific components or additional training. Further, we improve current techniques for detecting adversarial attacks on OOD samples, while providing high levels of certified and adversarial robustness on in-distribution samples. The average of all OOD detection metrics on CIFAR10/100 shows an increase of ∼ 13 % / 5% relative to previous approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset