Differentially Private Transfer Learning with Conditionally Deep Autoencoders

05/10/2021
by   Mohit Kumar, et al.
0

This paper considers the problem of differentially private semi-supervised transfer learning. The notion of membership-mapping is developed using measure theory basis to learn data representation via a fuzzy membership function. An alternative conception of deep autoencoder, referred to as Conditionally Deep Membership-Mapping Autoencoder (CDMMA) (that consists of a nested compositions of membership-mappings), is considered. Under practice-oriented settings, an analytical solution for the learning of CDMFA can be derived by means of variational optimization. The paper proposes a transfer learning approach that combines CDMMA with a tailored noise adding mechanism to achieve a given level of privacy-loss bound with the minimum perturbation of the data. Numerous experiments were carried out using MNIST, USPS, Office, and Caltech256 datasets to verify the competitive robust performance of the proposed methodology.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset