Differentially Private Decentralized Learning
Decentralized learning has received great attention for its high efficiency and performance. In such systems, every participant constantly exchanges parameters with each other to train a shared model, which can put him at the risk of data privacy leakage. Differential Privacy (DP) has been adopted to enhance the Stochastic Gradient Descent (SGD) algorithm. However, these approaches mainly focus on single-party learning, or centralized learning in the synchronous mode. In this paper, we design a novel DP-SGD algorithm for decentralized learning systems. The key contribution of our solution is a topology-aware optimization strategy, which leverages the unique network characteristics of decentralized systems to effectively reduce the noise scale and improve the model usability. Besides, we design a novel learning protocol for both synchronous and asynchronous decentralized systems by restricting the sensitivity of the SGD algorithm and maximizing the noise reduction. We formally analyze and prove the DP requirement of our proposed algorithms. Experimental evaluations demonstrate that our algorithm achieves a better trade-off between usability and privacy than prior works.
READ FULL TEXT