Differential Evolution with Reversible Linear Transformations

02/07/2020
by   Jakub M. Tomczak, et al.
0

Differential evolution (DE) is a well-known type of evolutionary algorithms (EA). Similarly to other EA variants it can suffer from small populations and loose diversity too quickly. This paper presents a new approach to mitigate this issue: We propose to generate new candidate solutions by utilizing reversible linear transformation applied to a triplet of solutions from the population. In other words, the population is enlarged by using newly generated individuals without evaluating their fitness. We assess our methods on three problems: (i) benchmark function optimization, (ii) discovering parameter values of the gene repressilator system, (iii) learning neural networks. The empirical results indicate that the proposed approach outperforms vanilla DE and a version of DE with applying differential mutation three times on all testbeds.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro