Differential Area Analysis for Ransomware: Attacks, Countermeasures, and Limitations
Crypto-ransomware attacks have been a growing threat over the last few years. The goal of every ransomware strain is encrypting user data, such that attackers can later demand users a ransom for unlocking their data. To maximise their earning chances, attackers equip their ransomware with strong encryption which produce files with high entropy values. Davies et al. proposed Differential Area Analysis (DAA), a technique that analyses files headers to differentiate compressed, regularly encrypted, and ransomware-encrypted files. In this paper, first we propose three different attacks to perform malicious header manipulation and bypass DAA detection. Then, we propose three countermeasures, namely 2-Fragments (2F), 3-Fragments (3F), and 4-Fragments (4F), which can be applied equally against each of the three attacks we propose. We conduct a number of experiments to analyse the ability of our countermeasures to detect ransomware-encrypted files, whether implementing our proposed attacks or not. Last, we test the robustness of our own countermeasures by analysing the performance, in terms of files per second analysed and resilience to extensive injection of low-entropy data. Our results show that our detection countermeasures are viable and deployable alternatives to DAA.
READ FULL TEXT