Differentiable Subset Sampling

01/29/2019
by   Sang Michael Xie, et al.
2

Many machine learning tasks require sampling a subset of items from a collection. Due to the non-differentiability of subset sampling, the procedure is usually not included in end-to-end deep learning models. We show that through a connection to weighted reservoir sampling, the Gumbel-max trick can be extended to produce exact subset samples, and that a recently proposed top-k relaxation can be used to differentiate through the subset sampling procedure. We test our method on end-to-end tasks requiring subset sampling, including a differentiable k-nearest neighbors task and an instance-wise feature selection task for model interpretability.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro