Differentiable PAC-Bayes Objectives with Partially Aggregated Neural Networks

06/22/2020
by   Felix Biggs, et al.
11

We make three related contributions motivated by the challenge of training stochastic neural networks, particularly in a PAC-Bayesian setting: (1) we show how averaging over an ensemble of stochastic neural networks enables a new class of partially-aggregated estimators; (2) we show that these lead to provably lower-variance gradient estimates for non-differentiable signed-output networks; (3) we reformulate a PAC-Bayesian bound for these networks to derive a directly optimisable, differentiable objective and a generalisation guarantee, without using a surrogate loss or loosening the bound. This bound is twice as tight as that of Letarte et al. (2019) on a similar network type. We show empirically that these innovations make training easier and lead to competitive guarantees.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset