Dichotomy Results for Classified Rank-Maximal Matchings and Popular Matchings

05/08/2018
by   Meghana Nasre, et al.
0

In this paper, we consider the problem of computing an optimal matching in a bipartite graph where elements of one side of the bipartition specify preferences over the other side, and one or both sides can have capacities and classifications. The input instance is a bipartite graph G=(A U P,E), where A is a set of applicants, P is a set of posts, and each applicant ranks its neighbors in an order of preference, possibly involving ties. Moreover, each vertex v belonging to A U P has a quota q(v) denoting the maximum number of partners it can have in any allocation of applicants to posts -- referred to as a matching in this paper. A classification C_u for a vertex u is a collection of subsets of neighbors of u. Each subset (class) C∈C_u has an upper quota denoting the maximum number of vertices from C that can be matched to u. The goal is to find a matching that is optimal amongst all the feasible matchings, which are matchings that respect quotas of all the vertices and classes. We consider two well-studied notions of optimality namely popularity and rank-maximality. We present an O(|E|^2)-time algorithm for finding a feasible rank-maximal matching, when each classification is a laminar family. We complement this with an NP-hardness result when classes are non-laminar even under strict preference lists, and even when only posts have classifications, and each applicant has a quota of one. We show an analogous dichotomy result for computing a popular matching amongst feasible matchings (if one exists) where applicants having a quota of one. En-route to designing the polynomial time algorithms, we adapt the well-known Dulmage Mendelsohn decomposition of a bipartite graph w.r.t. a maximum matching to a maximum flow on special flow networks. We believe this generalization is of independent interest.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset