Diagonal and normal with Toeplitz-block splitting iteration method for space fractional coupled nonlinear Schrödinger equations with repulsive nonlinearities

09/20/2023
by   Fei-Yan Zhang, et al.
0

By applying the linearly implicit conservative difference scheme proposed in [D.-L. Wang, A.-G. Xiao, W. Yang. J. Comput. Phys. 2014;272:670-681], the system of repulsive space fractional coupled nonlinear Schrödinger equations leads to a sequence of linear systems with complex symmetric and Toeplitz-plus-diagonal structure. In this paper, we propose the diagonal and normal with Toeplitz-block splitting iteration method to solve the above linear systems. The new iteration method is proved to converge unconditionally, and the optimal iteration parameter is deducted. Naturally, this new iteration method leads to a diagonal and normal with circulant-block preconditioner which can be executed efficiently by fast algorithms. In theory, we provide sharp bounds for the eigenvalues of the discrete fractional Laplacian and its circulant approximation, and further analysis indicates that the spectral distribution of the preconditioned system matrix is tight. Numerical experiments show that the new preconditioner can significantly improve the computational efficiency of the Krylov subspace iteration methods. Moreover, the corresponding preconditioned GMRES method shows space mesh size independent and almost fractional order parameter insensitive convergence behaviors.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset