Diagnostics for Monte Carlo Algorithms for Models with Intractable Normalizing Functions

09/10/2021
by   Bokgyeong Kang, et al.
0

Models with intractable normalizing functions have numerous applications ranging from network models to image analysis to spatial point processes. Because the normalizing constants are functions of the parameters of interest, standard Markov chain Monte Carlo cannot be used for Bayesian inference for these models. A number of algorithms have been developed for such models. Some have the posterior distribution as the asymptotic distribution. Other "asymptotically inexact" algorithms do not possess this property. There is limited guidance for evaluating approximations based on these algorithms, and hence it is very hard to tune them. We propose two new diagnostics that address these problems for intractable normalizing function models. Our first diagnostic, inspired by the second Bartlett identity, applies in principle to any asymptotically exact or inexact algorithm. We develop an approximate version of this new diagnostic that is applicable to intractable normalizing function problems. Our second diagnostic is a Monte Carlo approximation to a kernel Stein discrepancy-based diagnostic introduced by Gorham and Mackey (2017). We provide theoretical justification for our methods. We apply our diagnostics to several algorithms in the context of challenging simulated and real data examples, including an Ising model, an exponential random graph model, and a Markov point process.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

06/20/2018

A Function Emulation Approach for Intractable Distributions

Doubly intractable distributions arise in many settings, for example in ...
04/15/2021

Robust Generalised Bayesian Inference for Intractable Likelihoods

Generalised Bayesian inference updates prior beliefs using a loss functi...
05/11/2015

On Markov chain Monte Carlo methods for tall data

Markov chain Monte Carlo methods are often deemed too computationally in...
04/01/2015

Bayesian model comparison with un-normalised likelihoods

Models for which the likelihood function can be evaluated only up to a p...
09/24/2018

Flexible Mixture Modeling on Constrained Spaces

This paper addresses challenges in flexibly modeling multimodal data tha...
07/09/2018

Computer Assisted Localization of a Heart Arrhythmia

We consider the problem of locating a point-source heart arrhythmia usin...
02/25/2021

An Easy to Interpret Diagnostic for Approximate Inference: Symmetric Divergence Over Simulations

It is important to estimate the errors of probabilistic inference algori...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.