DH-GAN: A Physics-driven Untrained Generative Adversarial Network for 3D Microscopic Imaging using Digital Holography

05/25/2022
by   Xiwen Chen, et al.
0

Digital holography is a 3D imaging technique by emitting a laser beam with a plane wavefront to an object and measuring the intensity of the diffracted waveform, called holograms. The object's 3D shape can be obtained by numerical analysis of the captured holograms and recovering the incurred phase. Recently, deep learning (DL) methods have been used for more accurate holographic processing. However, most supervised methods require large datasets to train the model, which is rarely available in most DH applications due to the scarcity of samples or privacy concerns. A few one-shot DL-based recovery methods exist with no reliance on large datasets of paired images. Still, most of these methods often neglect the underlying physics law that governs wave propagation. These methods offer a black-box operation, which is not explainable, generalizable, and transferrable to other samples and applications. In this work, we propose a new DL architecture based on generative adversarial networks that uses a discriminative network for realizing a semantic measure for reconstruction quality while using a generative network as a function approximator to model the inverse of hologram formation. We impose smoothness on the background part of the recovered image using a progressive masking module powered by simulated annealing to enhance the reconstruction quality. The proposed method is one of its kind that exhibits high transferability to similar samples, which facilitates its fast deployment in time-sensitive applications without the need for retraining the network. The results show a considerable improvement to competitor methods in reconstruction quality (about 5 dB PSNR gain) and robustness to noise (about 50

READ FULL TEXT
research
07/03/2021

SPI-GAN: Towards Single-Pixel Imaging through Generative Adversarial Network

Single-pixel imaging is a novel imaging scheme that has gained popularit...
research
02/03/2021

UPHDR-GAN: Generative Adversarial Network for High Dynamic Range Imaging with Unpaired Data

The paper proposes a method to effectively fuse multi-exposure inputs an...
research
09/28/2021

AutoPhaseNN: Unsupervised Physics-aware Deep Learning of 3D Nanoscale Coherent Imaging

The problem of phase retrieval, or the algorithmic recovery of lost phas...
research
12/07/2017

Stochastic reconstruction of an oolitic limestone by generative adversarial networks

Stochastic image reconstruction is a key part of modern digital rock phy...
research
12/02/2021

High-Precision Inversion of Dynamic Radiography Using Hydrodynamic Features

Radiography is often used to probe complex, evolving density fields in d...
research
01/12/2022

De-Noising of Photoacoustic Microscopy Images by Deep Learning

As a hybrid imaging technology, photoacoustic microscopy (PAM) imaging s...
research
11/23/2019

Deep learning reconstruction of ultrashort pulses from 2D spatial intensity patterns recorded by an all-in-line system in a single-shot

We propose a simple all-in-line single-shot scheme for diagnostics of ul...

Please sign up or login with your details

Forgot password? Click here to reset