Development of patients triage algorithm from nationwide COVID-19 registry data based on machine learning

09/18/2021
by   Hyung Ju Hwang, et al.
0

Prompt severity assessment model of confirmed patients who were infected with infectious diseases could enable efficient diagnosis and alleviate the burden on the medical system. This paper provides the development processes of the severity assessment model using machine learning techniques and its application on SARS-CoV-2 patients. Here, we highlight that our model only requires basic patients' basic personal data, allowing for them to judge their own severity. We selected the boosting-based decision tree model as a classifier and interpreted mortality as a probability score after modeling. Specifically, hyperparameters that determine the structure of the tree model were tuned using the Bayesian optimization technique without any knowledge of medical information. As a result, we measured model performance and identified the variables affecting the severity through the model. Finally, we aim to establish a medical system that allows patients to check their own severity and informs them to visit the appropriate clinic center based on the past treatment details of other patients with similar severity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset