Development of An Android Application for Object Detection Based on Color, Shape, or Local Features

03/10/2017 ∙ by Lamiaa A. Elrefaei, et al. ∙ 0

Object detection and recognition is an important task in many computer vision applications. In this paper an Android application was developed using Eclipse IDE and OpenCV3 Library. This application is able to detect objects in an image that is loaded from the mobile gallery, based on its color, shape, or local features. The image is processed in the HSV color domain for better color detection. Circular shapes are detected using Circular Hough Transform and other shapes are detected using Douglas-Peucker algorithm. BRISK (binary robust invariant scalable keypoints) local features were applied in the developed Android application for matching an object image in another scene image. The steps of the proposed detection algorithms are described, and the interfaces of the application are illustrated. The application is ported and tested on Galaxy S3, S6, and Note1 Smartphones. Based on the experimental results, the application is capable of detecting eleven different colors, detecting two dimensional geometrical shapes including circles, rectangles, triangles, and squares, and correctly match local features of object and scene images for different conditions. The application could be used as a standalone application, or as a part of another application such as Robot systems, traffic systems, e-learning applications, information retrieval and many others.



There are no comments yet.


page 4

page 6

page 7

page 8

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.