Deterministic equivalent of the Conjugate Kernel matrix associated to Artificial Neural Networks

06/09/2023
by   Clément Chouard, et al.
0

We study the Conjugate Kernel associated to a multi-layer linear-width feed-forward neural network with random weights, biases and data. We show that the empirical spectral distribution of the Conjugate Kernel converges to a deterministic limit. More precisely we obtain a deterministic equivalent for its Stieltjes transform and its resolvent, with quantitative bounds involving both the dimension and the spectral parameter. The limiting equivalent objects are described by iterating free convolution of measures and classical matrix operations involving the parameters of the model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro