Deterministic Approximation of Random Walks via Queries in Graphs of Unbounded Size

11/03/2021
by   Edward Pyne, et al.
0

Consider the following computational problem: given a regular digraph G=(V,E), two vertices u,v ∈ V, and a walk length t∈ℕ, estimate the probability that a random walk of length t from u ends at v to within ±ε. A randomized algorithm can solve this problem by carrying out O(1/ε^2) random walks of length t from u and outputting the fraction that end at v. In this paper, we study deterministic algorithms for this problem that are also restricted to carrying out walks of length t from u and seeing which ones end at v. Specifically, if G is d-regular, the algorithm is given oracle access to a function f : [d]^t→{0,1} where f(x) is 1 if the walk from u specified by the edge labels in x ends at v. We assume that G is consistently labelled, meaning that the edges of label i for each i∈ [d] form a permutation on V. We show that there exists a deterministic algorithm that makes poly(dt/ε) nonadaptive queries to f, regardless of the number of vertices in the graph G. Crucially, and in contrast to the randomized algorithm, our algorithm does not simply output the average value of its queries. Indeed, Hoza, Pyne, and Vadhan (ITCS 2021) showed that any deterministic algorithm of the latter form that works for graphs of unbounded size must have query complexity at least exp(Ω̃(log(t)log(1/ε))).

READ FULL TEXT

page 1

page 2

page 3

page 4

research
02/15/2021

Local Access to Random Walks

For a graph G on n vertices, naively sampling the position of a random w...
research
12/10/2019

High-precision Estimation of Random Walks in Small Space

In this paper, we provide a deterministic Õ(log N)-space algorithm for e...
research
07/05/2022

Finding a Hidden Edge

We consider the problem of finding an edge in a hidden undirected graph ...
research
09/04/2017

Estimating graph parameters via random walks with restarts

In this paper we discuss the problem of estimating graph parameters from...
research
12/12/2021

Approximating TSP walks in subcubic graphs

We prove that every simple 2-connected subcubic graph on n vertices with...
research
03/15/2019

Deterministic Approximation of Random Walks in Small Space

We give a deterministic, nearly logarithmic-space algorithm that given a...
research
06/10/2022

Random Walks, Equidistribution and Graphical Designs

Let G=(V,E) be a d-regular graph on n vertices and let μ_0 be a probabil...

Please sign up or login with your details

Forgot password? Click here to reset