DeepAI AI Chat
Log In Sign Up

Detection of concealed cars in complex cargo X-ray imagery using Deep Learning

by   Nicolas Jaccard, et al.

Non-intrusive inspection systems based on X-ray radiography techniques are routinely used at transport hubs to ensure the conformity of cargo content with the supplied shipping manifest. As trade volumes increase and regulations become more stringent, manual inspection by trained operators is less and less viable due to low throughput. Machine vision techniques can assist operators in their task by automating parts of the inspection workflow. Since cars are routinely involved in trafficking, export fraud, and tax evasion schemes, they represent an attractive target for automated detection and flagging for subsequent inspection by operators. In this contribution, we describe a method for the detection of cars in X-ray cargo images based on trained-from-scratch Convolutional Neural Networks. By introducing an oversampling scheme that suitably addresses the low number of car images available for training, we achieved 100 1-in-454. Cars that were partially or completely obscured by other goods, a modus operandi frequently adopted by criminals, were correctly detected. We believe that this level of performance suggests that the method is suitable for deployment in the field. It is expected that the generic object detection workflow described can be extended to other object classes given the availability of suitable training data.


page 8

page 10

page 11

page 12

page 13


Deep inspection: an electrical distribution pole parts study via deep neural networks

Electrical distribution poles are important assets in electricity supply...

Automated detection of smuggled high-risk security threats using Deep Learning

The security infrastructure is ill-equipped to detect and deter the smug...

A tomographic workflow to enable deep learning for X-ray based foreign object detection

Detection of unwanted (`foreign') objects within products is a common pr...

Vision Zero: on a Provable Method for Eliminating Roadway Accidents without Compromising Traffic Throughput

We propose an economical, viable, approach to eliminate almost all car a...