Detecting Table Region in PDF Documents Using Distant Supervision

06/29/2015
by   Miao Fan, et al.
0

Superior to state-of-the-art approaches which compete in table recognition with 67 annotated government reports in PDF format released by ICDAR 2013 Table Competition, this paper contributes a novel paradigm leveraging large-scale unlabeled PDF documents to open-domain table detection. We integrate the paradigm into our latest developed system ( PdfExtra) to detect the region of tables by means of 9,466 academic articles from the entire repository of ACL Anthology, where almost all papers are archived by PDF format without annotation for tables. The paradigm first designs heuristics to automatically construct weakly labeled data. It then feeds diverse evidences, such as layouts of documents and linguistic features, which are extracted by Apache PDFBox and processed by Stanford NLP toolkit, into different canonical classifiers. We finally use these classifiers, i.e. Naive Bayes, Logistic Regression and Support Vector Machine, to collaboratively vote on the region of tables. Experimental results show that PdfExtra achieves a great leap forward, compared with the state-of-the-art approach. Moreover, we discuss the factors of different features, learning models and even domains of documents that may impact the performance. Extensive evaluations demonstrate that our paradigm is compatible enough to leverage various features and learning models for open-domain table region detection within PDF files.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset