Detecting Suspicious Events in Fast Information Flows

01/07/2021
by   Kristiaan Pelckmans, et al.
0

We describe a computational feather-light and intuitive, yet provably efficient algorithm, named HALFADO. HALFADO is designed for detecting suspicious events in a high-frequency stream of complex entries, based on a relatively small number of examples of human judgement. Operating a sufficiently accurate detection system is vital for assisting teams of human experts in many different areas of the modern digital society. These systems have intrinsically a far-reaching normative effect, and public knowledge of the workings of such technology should be a human right. On a conceptual level, the present approach extends one of the most classical learning algorithms for classification, inheriting its theoretical properties. It however works in a semi-supervised way integrating human and computational intelligence. On a practical level, this algorithm transcends existing approaches (expert systems) by managing and boosting their performance into a single global detector. We illustrate HALFADO's efficacy on two challenging applications: (1) for detecting hate speech messages in a flow of text messages gathered from a social media platform, and (2) for a Transaction Monitoring System (TMS) in FinTech detecting fraudulent transactions in a stream of financial transactions. This algorithm illustrates that - contrary to popular belief - advanced methods of machine learning need not require neither advanced levels of computation power nor expensive annotation efforts.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset