Detecting Point Outliers Using Prune-based Outlier Factor (PLOF)
Outlier detection (also known as anomaly detection or deviation detection) is a process of detecting data points in which their patterns deviate significantly from others. It is common to have outliers in industry applications, which could be generated by different causes such as human error, fraudulent activities, or system failure. Recently, density-based methods have shown promising results, particularly among which Local Outlier Factor (LOF) is arguably dominating. However, one of the major drawbacks of LOF is that it is computationally expensive. Motivated by the mentioned problem, this research presents a novel pruning-based procedure in which the execution time of LOF is reduced while the performance is maintained. A novel Prune-based Local Outlier Factor (PLOF) approach is proposed, in which prior to employing LOF, outlierness of each data instance is measured. Next, based on a threshold, data instances that require further investigation are separated and LOF score is only computed for these points. Extensive experiments have been conducted and results are promising. Comparison experiments with the original LOF and two state-of-the-art variants of LOF have shown that PLOF produces higher accuracy and precision while reducing execution time.
READ FULL TEXT