Detecting Hate Speech with GPT-3

03/23/2021 ∙ by Ke-Li Chiu, et al. ∙ 0

Sophisticated language models such as OpenAI's GPT-3 can generate hateful text that targets marginalized groups. Given this capacity, we are interested in whether large language models can be used to identify hate speech and classify text as sexist or racist? We use GPT-3 to identify sexist and racist text passages with zero-, one-, and few-shot learning. We find that with zero- and one-shot learning, GPT-3 is able to identify sexist or racist text with an accuracy between 48 per cent and 69 per cent. With few-shot learning and an instruction included in the prompt, the model's accuracy can be as high as 78 per cent. We conclude that large language models have a role to play in hate speech detection, and that with further development language models could be used to counter hate speech and even self-police.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.