Detecting Hardly Visible Roads in Low-Resolution Satellite Time Series Data

by   Stefan Oehmcke, et al.

Massive amounts of satellite data have been gathered over time, holding the potential to unveil a spatiotemporal chronicle of the surface of Earth. These data allow scientists to investigate various important issues, such as land use changes, on a global scale. However, not all land-use phenomena are equally visible on satellite imagery. In particular, the creation of an inventory of the planet's road infrastructure remains a challenge, despite being crucial to analyze urbanization patterns and their impact. Towards this end, this work advances data-driven approaches for the automatic identification of roads based on open satellite data. Given the typical resolutions of these historical satellite data, we observe that there is inherent variation in the visibility of different road types. Based on this observation, we propose two deep learning frameworks that extend state-of-the-art deep learning methods by formalizing road detection as an ordinal classification task. In contrast to related schemes, one of the two models also resorts to satellite time series data that are potentially affected by missing data and cloud occlusion. Taking these time series data into account eliminates the need to manually curate datasets of high-quality image tiles, substantially simplifying the application of such models on a global scale. We evaluate our approaches on a dataset that is based on Sentinel 2 satellite imagery and OpenStreetMap vector data. Our results indicate that the proposed models can successfully identify large and medium-sized roads. We also discuss opportunities and challenges related to the detection of roads and other infrastructure on a global scale.


page 1

page 2

page 3

page 5

page 6

page 8

page 9

page 10


Automated System for Ship Detection from Medium Resolution Satellite Optical Imagery

In this paper, we present a ship detection pipeline for low-cost medium ...

BreizhCrops: A Satellite Time Series Dataset for Crop Type Identification

This dataset challenges the time series community with the task of satel...

Merging Satellite Measurements of Rainfall Using Multi-scale Imagery Technique

Several passive microwave satellites orbit the Earth and measure rainfal...

Road Mapping in Low Data Environments with OpenStreetMap

Roads are among the most essential components of any country's infrastru...

Identifying safe intersection design through unsupervised feature extraction from satellite imagery

The World Health Organization has listed the design of safer intersectio...

Please sign up or login with your details

Forgot password? Click here to reset