References
- [1] Granger C W J. Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica: Journal of the Econometric Society, 1969: 424-438.
- [2] Marko H. The bidirectional communication theory–a generalization of information theory[J]. IEEE Transactions on communications, 1973, 21(12): 1345-1351.
- [3] Schreiber T. Measuring information transfer[J]. Physical Review Letters, 2000, 85(2): 461.
- [4] Barnett L, Barrett A B, Seth A K. Granger causality and transfer entropy are equivalent for Gaussian variables[J]. Physical Review Letters, 2009, 103(23): 238701.
- [5] Schindlerova K. Equivalence of Granger Causality and Transfer Entropy: A Generalization[J]. Applied Mathematical Sciences, 2011, 5: 3637–3648.
- [6] Mao X, Shang P. Transfer entropy between multivariate time series[J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 47: 338-347.
-
[7]
Montalto A, Stramaglia S, Faes L, et al. Neural networks with non-uniform embedding and explicit validation phase to assess Granger causality[J]. Neural Networks, 2015, 71: 159-171.
- [8] Faes L, Nollo G, Porta A. Information-based detection of nonlinear Granger causality in multivariate processes via a nonuniform embedding technique[J]. Physical Review E, 2011, 83(5): 051112.
- [9] Vlachos I, Kugiumtzis D. Nonuniform state-space reconstruction and coupling detection[J]. Physical Review E, 2010, 82(1): 016207.
- [10] Kugiumtzis D. Direct-coupling information measure from nonuniform embedding[J]. Physical Review E, 2013, 87(6): 062918.
- [11] Kugiumtzis D, Koutlis C, Tsimpiris A, et al. Dynamics of epileptiform discharges induced by transcranial magnetic stimulation in genetic generalized epilepsy[J]. International Journal of Neural Systems, 2017, 27(07): 1750037.
- [12] Kugiumtzis D, Kimiskidis V K. Direct causal networks for the study of transcranial magnetic stimulation effects on focal epileptiform discharges[J]. International Journal of Neural Systems, 2015, 25(05): 1550006.
- [13] Papana A, Kyrtsou C, Kugiumtzis D, et al. Financial networks based on Granger causality: A case study[J]. Physica A: Statistical Mechanics and its Applications, 2017, 482: 65-73.
- [14] Papana A, Kyrtsou C, Kugiumtzis D, et al. Assessment of resampling methods for causality testing: A note on the US inflation behavior[J]. PloS one, 2017, 12(7): e0180852.
- [15] Runge J, Heitzig J, Petoukhov V, et al. Escaping the curse of dimensionality in estimating multivariate transfer entropy[J]. Physical Review Letters, 2012, 108(25): 258701.
- [16] Runge J, Donner R V, Kurths J. Optimal model-free prediction from multivariate time series[J]. Physical Review E, 2015, 91(5): 052909.
-
[17]
Brown G, Pocock A, Zhao M J, et al. Conditional likelihood maximisation: a unifying framework for information theoretic feature selection[J]. Journal of Machine Learning Research, 2012, 13: 27-66.
-
[18]
Vinh N X, Zhou S, Chan J, et al. Can high-order dependencies improve mutual information based feature selection?[J]. Pattern Recognition, 2016, 53: 46-58.
- [19] Wibral M, Vicente R, Lizier JT. Directed Information Measures in Neuroscience. Berlin; Heidelberg: Springer-Verlag. 2014.
- [20] Battiti R. Using mutual information for selecting features in supervised neural net learning[J]. IEEE Transactions on Neural Networks, 1994, 5(4): 537-550.
-
[21]
Yang H H, Moody J. Data visualization and feature selection: New algorithms for nongaussian data[C]. Advances in Neural Information Processing Systems. 2000: 687-693.
- [22] Fleuret F. Fast binary feature selection with conditional mutual information[J]. Journal of Machine Learning Research, 2004, 5 : 1531-1555.
- [23] Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238.
-
[24]
Lin D, Tang X. Conditional infomax learning: an integrated framework for feature extraction and fusion[C]. European Conference on Computer Vision. Springer, Berlin, Heidelberg, 2006: 68-82.
-
[25]
Meyer P E, Bontempi G. On the use of variable complementarity for feature selection in cancer classification[C]. Workshops on Applications of Evolutionary Computation. Springer, Berlin, Heidelberg, 2006: 91-102.
- [26] Hacine-Gharbi A, Ravier P, Harba R, et al. Low bias histogram-based estimation of mutual information for feature selection[J]. Pattern Recognition Letters, 2012, 33(10): 1302-1308.
- [27] Kwak, N, Choi, C. H. Input feature selection by mutual information based on Parzen window. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002 (12): 1667-1671.
- [28] Kraskov A, Stögbauer H, Grassberger P. Estimating mutual information[J]. Physical Review E, 2004, 69(6): 066138.
- [29] Schelter B, Winterhalder M, Hellwig B, et al. Direct or indirect? Graphical models for neural oscillators[J]. Journal of Physiology-Paris, 2006, 99(1): 37-46.
- [30] Zhang J. Low-dimensional approximation searching strategy for transfer entropy from non-uniform embedding[J]. PloS one, 2018, 13(3): e0194382.
- [31] Gourévitch B, Le Bouquin-Jeannès R, Faucon G. Linear and nonlinear causality between signals: methods, examples and neurophysiological applications[J]. Biological cybernetics, 2006, 95(4): 349-369.
- [32] Romano M C, Thiel M, Kurths J, et al. Estimation of the direction of the coupling by conditional probabilities of recurrence[J]. Physical Review E, 2007, 76(3): 036211.
- [33] Kramer M A, Kolaczyk E D, Kirsch H E. Emergent network topology at seizure onset in humans[J]. Epilepsy Research, 2008, 79(2-3): 173-186.
- [34] Marinazzo D, Pellicoro M, Stramaglia S. Kernel method for nonlinear Granger causality[J]. Physical Review Letters, 2008, 100(14): 144103.
- [35] Faes L, Marinazzo D, Stramaglia S. Multiscale information decomposition: exact computation for multivariate Gaussian processes[J]. Entropy, 2017, 19(8): 408.
- [36] Porta A, Faes L. Wiener–Granger causality in network physiology with applications to cardiovascular control and neuroscience[J]. Proceedings of the IEEE, 2016, 104(2): 282-309.
- [37] Montalto A, Faes L, Marinazzo D. MuTE: a MATLAB toolbox to compare established and novel estimators of the multivariate transfer entropy[J]. PloS one, 2014, 9(10): e109462.