Designing Discontinuities
Discontinuities can be fairly arbitrary but also cause a significant impact on outcomes in social systems. Indeed, their arbitrariness is why they have been used to infer causal relationships among variables in numerous settings. Regression discontinuity from econometrics assumes the existence of a discontinuous variable that splits the population into distinct partitions to estimate the causal effects of a given phenomenon. Here we consider the design of partitions for a given discontinuous variable to optimize a certain effect previously studied using regression discontinuity. To do so, we propose a quantization-theoretic approach to optimize the effect of interest, first learning the causal effect size of a given discontinuous variable and then applying dynamic programming for optimal quantization design of discontinuities that balance the gain and loss in the effect size. We also develop a computationally-efficient reinforcement learning algorithm for the dynamic programming formulation of optimal quantization. We demonstrate our approach by designing optimal time zone borders for counterfactuals of social capital, social mobility, and health. This is based on regression discontinuity analyses we perform on novel data, which may be of independent empirical interest in showing a causal relationship between sunset time and social capital.
READ FULL TEXT