Design of statistical quality control procedures using genetic algorithms

01/27/2002
by   Aristides T. Hatjimihail, et al.
0

In general, we can not use algebraic or enumerative methods to optimize a quality control (QC) procedure so as to detect the critical random and systematic analytical errors with stated probabilities, while the probability for false rejection is minimum. Genetic algorithms (GAs) offer an alternative, as they do not require knowledge of the objective function to be optimized and search through large parameter spaces quickly. To explore the application of GAs in statistical QC, we have developed an interactive GAs based computer program that designs a novel near optimal QC procedure, given an analytical process. The program uses the deterministic crowding algorithm. An illustrative application of the program suggests that it has the potential to design QC procedures that are significantly better than 45 alternative ones that are used in the clinical laboratories.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro