Design Methodology for Energy Efficient Unmanned Aerial Vehicles

09/25/2019
by   Jingyu He, et al.
0

In this paper, we present a load-balancing approach to analyze and partition the UAV perception and navigation intelligence (PNI) code for parallel execution, as well as assigning each parallel computational task to a processing element in an Network-on-chip (NoC) architecture such that the total communication energy is minimized and congestion is reduced. First, we construct a data dependency graph (DDG) by converting the PNI high level program into Low Level Virtual Machine (LLVM) Intermediate Representation (IR). Second, we propose a scheduling algorithm to partition the PNI application into clusters such that (1) inter-cluster communication is minimized, (2) NoC energy is reduced and (3) the workloads of different cores are balanced for maximum parallel execution. Finally, an energy-aware mapping scheme is adopted to assign clusters onto tile-based NoCs. We validate this approach with a drone self-navigation application and the experimental results show that we can achieve up to 8.4x energy reduction and 10.5x performance speedup.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset