Descriptor Distillation for Efficient Multi-Robot SLAM

03/15/2023
by   Xiyue Guo, et al.
0

Performing accurate localization while maintaining the low-level communication bandwidth is an essential challenge of multi-robot simultaneous localization and mapping (MR-SLAM). In this paper, we tackle this problem by generating a compact yet discriminative feature descriptor with minimum inference time. We propose descriptor distillation that formulates the descriptor generation into a learning problem under the teacher-student framework. To achieve real-time descriptor generation, we design a compact student network and learn it by transferring the knowledge from a pre-trained large teacher model. To reduce the descriptor dimensions from the teacher to the student, we propose a novel loss function that enables the knowledge transfer between two different dimensional descriptors. The experimental results demonstrate that our model is 30 model and produces better descriptors in patch matching. Moreover, we build a MR-SLAM system based on the proposed method and show that our descriptor distillation can achieve higher localization performance for MR-SLAM with lower bandwidth.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset