Describe me an Aucklet: Generating Grounded Perceptual Category Descriptions

03/07/2023
by   Bill Noble, et al.
0

Human language users can generate descriptions of perceptual concepts beyond instance-level representations and also use such descriptions to learn provisional class-level representations. However, the ability of computational models to learn and operate with class representations is under-investigated in the language-and-vision field. In this paper, we train separate neural networks to generate and interpret class-level descriptions. We then use the zero-shot classification performance of the interpretation model as a measure of communicative success and class-level conceptual grounding. We investigate the performance of prototype- and exemplar-based neural representations grounded category description. Finally, we show that communicative success reveals performance issues in the generation model that are not captured by traditional intrinsic NLG evaluation metrics, and argue that these issues can be traced to a failure to properly ground language in vision at the class level. We observe that the interpretation model performs better with descriptions that are low in diversity on the class level, possibly indicating a strong reliance on frequently occurring features.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset