Deriving Theorems in Implicational Linear Logic, Declaratively

09/22/2020
by   Paul Tarau, et al.
6

The problem we want to solve is how to generate all theorems of a given size in the implicational fragment of propositional intuitionistic linear logic. We start by filtering for linearity the proof terms associated by our Prolog-based theorem prover for Implicational Intuitionistic Logic. This works, but using for each formula a PSPACE-complete algorithm limits it to very small formulas. We take a few walks back and forth over the bridge between proof terms and theorems, provided by the Curry-Howard isomorphism, and derive step-by-step an efficient algorithm requiring a low polynomial effort per generated theorem. The resulting Prolog program runs in O(N) space for terms of size N and generates in a few hours 7,566,084,686 theorems in the implicational fragment of Linear Intuitionistic Logic together with their proof terms in normal form. As applications, we generate datasets for correctness and scalability testing of linear logic theorem provers and training data for neural networks working on theorem proving challenges. The results in the paper, organized as a literate Prolog program, are fully replicable. Keywords: combinatorial generation of provable formulas of a given size, intuitionistic and linear logic theorem provers, theorems of the implicational fragment of propositional linear intuitionistic logic, Curry-Howard isomorphism, efficient generation of linear lambda terms in normal form, Prolog programs for lambda term generation and theorem proving.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
12/29/2021

On the Relational Translation Method for Propositional Modal Logics

One way of proving theorems in modal logics is translating them into the...
research
10/04/2019

Formula Transformers and Combinatorial Test Generators for Propositional Intuitionistic Theorem Provers

We develop combinatorial test generation algorithms for progressively mo...
research
06/14/2015

Rare Speed-up in Automatic Theorem Proving Reveals Tradeoff Between Computational Time and Information Value

We show that strategies implemented in automatic theorem proving involve...
research
05/11/2022

Abductive Reasoning in Intuitionistic Propositional Logic via Theorem Synthesis

With help of a compact Prolog-based theorem prover for Intuitionistic Pr...
research
04/15/2019

The ILLTP Library for Intuitionistic Linear Logic

Benchmarking automated theorem proving (ATP) systems using standardized ...
research
12/20/2021

Proving Theorems using Incremental Learning and Hindsight Experience Replay

Traditional automated theorem provers for first-order logic depend on sp...
research
09/07/2021

Conjectures, Tests and Proofs: An Overview of Theory Exploration

A key component of mathematical reasoning is the ability to formulate in...

Please sign up or login with your details

Forgot password? Click here to reset