Depth Separations in Neural Networks: What is Actually Being Separated?

04/15/2019
by   Itay Safran, et al.
10

Existing depth separation results for constant-depth networks essentially show that certain radial functions in R^d, which can be easily approximated with depth 3 networks, cannot be approximated by depth 2 networks, even up to constant accuracy, unless their size is exponential in d. However, the functions used to demonstrate this are rapidly oscillating, with a Lipschitz parameter scaling polynomially with the dimension d (or equivalently, by scaling the function, the hardness result applies to O(1)-Lipschitz functions only when the target accuracy ϵ is at most poly(1/d)). In this paper, we study whether such depth separations might still hold in the natural setting of O(1)-Lipschitz radial functions, when ϵ does not scale with d. Perhaps surprisingly, we show that the answer is negative: In contrast to the intuition suggested by previous work, it is possible to approximate O(1)-Lipschitz radial functions with depth 2, size poly(d) networks, for every constant ϵ. We complement it by showing that approximating such functions is also possible with depth 2, size poly(1/ϵ) networks, for every constant d. Finally, we show that it is not possible to have polynomial dependence in both d,1/ϵ simultaneously. Overall, our results indicate that in order to show depth separations for expressing O(1)-Lipschitz functions with constant accuracy -- if at all possible -- one would need fundamentally different techniques than existing ones in the literature.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro