Depth Enables Long-Term Memory for Recurrent Neural Networks

03/23/2020
by   Alon Ziv, et al.
0

A key attribute that drives the unprecedented success of modern Recurrent Neural Networks (RNNs) on learning tasks which involve sequential data, is their ability to model intricate long-term temporal dependencies. However, a well established measure of RNNs long-term memory capacity is lacking, and thus formal understanding of the effect of depth on their ability to correlate data throughout time is limited. Specifically, existing depth efficiency results on convolutional networks do not suffice in order to account for the success of deep RNNs on data of varying lengths. In order to address this, we introduce a measure of the network's ability to support information flow across time, referred to as the Start-End separation rank, which reflects the distance of the function realized by the recurrent network from modeling no dependency between the beginning and end of the input sequence. We prove that deep recurrent networks support Start-End separation ranks which are combinatorially higher than those supported by their shallow counterparts. Thus, we establish that depth brings forth an overwhelming advantage in the ability of recurrent networks to model long-term dependencies, and provide an exemplar of quantifying this key attribute. We empirically demonstrate the discussed phenomena on common RNNs through extensive experimental evaluation using the optimization technique of restricting the hidden-to-hidden matrix to being orthogonal. Finally, we employ the tool of quantum Tensor Networks to gain additional graphic insights regarding the complexity brought forth by depth in recurrent networks.

READ FULL TEXT
research
10/25/2017

Benefits of Depth for Long-Term Memory of Recurrent Networks

The key attribute that drives the unprecedented success of modern Recurr...
research
06/08/2017

Gated Orthogonal Recurrent Units: On Learning to Forget

We present a novel recurrent neural network (RNN) based model that combi...
research
02/22/2016

Recurrent Orthogonal Networks and Long-Memory Tasks

Although RNNs have been shown to be powerful tools for processing sequen...
research
04/30/2016

Higher Order Recurrent Neural Networks

In this paper, we study novel neural network structures to better model ...
research
11/09/2015

Deep Recurrent Neural Networks for Sequential Phenotype Prediction in Genomics

In analyzing of modern biological data, we are often dealing with ill-po...
research
06/12/2023

On the Dynamics of Learning Time-Aware Behavior with Recurrent Neural Networks

Recurrent Neural Networks (RNNs) have shown great success in modeling ti...
research
11/18/2019

Radar Emitter Classification with Attribute-specific Recurrent Neural Networks

Radar pulse streams exhibit increasingly complex temporal patterns and c...

Please sign up or login with your details

Forgot password? Click here to reset