Density estimation in RKHS with application to Korobov spaces in high dimensions

08/28/2021
by   Yoshihito Kazashi, et al.
0

A kernel method for estimating a probability density function (pdf) from an i.i.d. sample drawn from such density is presented. Our estimator is a linear combination of kernel functions, the coefficients of which are determined by a linear equation. An error analysis for the mean integrated squared error is established in a general reproducing kernel Hilbert space setting. The theory developed is then applied to estimate pdfs belonging to weighted Korobov spaces, for which a dimension independent convergence rate is established. Under a suitable smoothness assumption, our method attains a rate arbitrarily close to the optimal rate. Numerical results support our theory.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro