DeltaBound Attack: Efficient decision-based attack in low queries regime

10/01/2022
by   Lorenzo Rossi, et al.
0

Deep neural networks and other machine learning systems, despite being extremely powerful and able to make predictions with high accuracy, are vulnerable to adversarial attacks. We proposed the DeltaBound attack: a novel, powerful attack in the hard-label setting with ℓ_2 norm bounded perturbations. In this scenario, the attacker has only access to the top-1 predicted label of the model and can be therefore applied to real-world settings such as remote API. This is a complex problem since the attacker has very little information about the model. Consequently, most of the other techniques present in the literature require a massive amount of queries for attacking a single example. Oppositely, this work mainly focuses on the evaluation of attack's power in the low queries regime ≤ 1000 queries) with ℓ_2 norm in the hard-label settings. We find that the DeltaBound attack performs as well and sometimes better than current state-of-the-art attacks while remaining competitive across different kinds of models. Moreover, we evaluate our method against not only deep neural networks, but also non-deep learning models, such as Gradient Boosting Decision Trees and Multinomial Naive Bayes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset