Delay Alignment Modulation: Enabling Equalization-Free Single-Carrier Communication

01/07/2022
by   Haiquan Lu, et al.
0

This paper proposes a novel broadband transmission technology, termed delay alignment modulation (DAM), which enables the low-complexity equalization-free single-carrier communication, yet without suffering from inter-symbol interference (ISI). The key idea of DAM is to deliberately introduce appropriate delays for information-bearing symbols at the transmitter side, so that after propagating over the time-dispersive channel, all multi-path signal components will arrive at the receiver simultaneously and constructively. We first show that by applying DAM for the basic multiple-input single-output (MISO) communication system, an ISI-free additive white Gaussian noise (AWGN) system can be obtained with the simple zero-forcing (ZF) beamforming. Furthermore, the more general DAM scheme is studied with the ISI-maximal-ratio transmission (MRT) and the ISI-minimum mean-square error (MMSE) beamforming. Simulation results are provided to show that when the channel is sparse and/or the antenna dimension is large, DAM not only resolves the notorious practical issues suffered by orthogonal frequency-division multiplexing (OFDM) such as high peak-to-average-power ratio (PAPR), severe out-of-band (OOB) emission, and vulnerability to carrier frequency offset (CFO), with low complexity, but also achieves higher spectral efficiency due to the saving of guard interval overhead.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset