Degrees of Second and Higher-Order Polynomials

05/05/2023
by   Donghyun Lim, et al.
0

Second-order polynomials generalize classical first-order ones in allowing for additional variables that range over functions rather than values. We are motivated by their applications in higher-order computational complexity theory, extending for example classical classes like P or PSPACE to operators in Analysis [doi:10.1137/S0097539794263452, doi:10.1145/2189778.2189780]. The degree subclassifies ordinary polynomial growth into linear, quadratic, cubic etc. In order to similarly classify second-order polynomials, define their degree to be an 'arctic' first-order polynomial (namely a term/expression over variable D and operations + and · and max). This degree turns out to transform as nicely under (now two kinds of) polynomial composition as the ordinary one. We also establish a normal form and semantic uniqueness for second-order polynomials. Then we define the degree of a third-order polynomial to be an arctic second-order polynomial, and establish its transformation under three kinds of composition.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro