Degree irregularity and rank probability bias in network meta-analysis

03/17/2020
by   Annabel L Davies, et al.
0

Network meta-analysis (NMA) is a statistical technique for the comparison of treatment options. The nodes of the network are the competing treatments and edges represent comparisons of treatments in trials. Outcomes of Bayesian NMA include estimates of treatment effects, and the probabilities that each treatment is ranked best, second best and so on. How exactly network geometry affects the accuracy and precision of these outcomes is not fully understood. Here we carry out a simulation study and find that disparity in the number of trials involving different treatments leads to a systematic bias in estimated rank probabilities. This bias is associated with an increased variation in the precision of treatment effect estimates. Using ideas from the theory of complex networks, we define a measure of `degree irregularity' to quantify asymmetry in the number of studies involving each treatment. Our simulations indicate that more regular networks have more precise treatment effect estimates and smaller bias of rank probabilities. We also find that degree regularity is a better indicator of NMA quality than both the total number of studies in a network and the disparity in the number of trials per comparison. These results have implications for planning future trials. We demonstrate that choosing trials which reduce the network's irregularity can improve the precision and accuracy of NMA outcomes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset