Deformable Gabor Feature Networks for Biomedical Image Classification

by   Xuan Gong, et al.

In recent years, deep learning has dominated progress in the field of medical image analysis. We find however, that the ability of current deep learning approaches to represent the complex geometric structures of many medical images is insufficient. One limitation is that deep learning models require a tremendous amount of data, and it is very difficult to obtain a sufficient amount with the necessary detail. A second limitation is that there are underlying features of these medical images that are well established, but the black-box nature of existing convolutional neural networks (CNNs) do not allow us to exploit them. In this paper, we revisit Gabor filters and introduce a deformable Gabor convolution (DGConv) to expand deep networks interpretability and enable complex spatial variations. The features are learned at deformable sampling locations with adaptive Gabor convolutions to improve representativeness and robustness to complex objects. The DGConv replaces standard convolutional layers and is easily trained end-to-end, resulting in deformable Gabor feature network (DGFN) with few additional parameters and minimal additional training cost. We introduce DGFN for addressing deep multi-instance multi-label classification on the INbreast dataset for mammograms and on the ChestX-ray14 dataset for pulmonary x-ray images.


page 2

page 7


Deformable Convolutional Networks

Convolutional neural networks (CNNs) are inherently limited to model geo...

3D Deformable Convolutions for MRI classification

Deep learning convolutional neural networks have proved to be a powerful...

Learning Deformable Point Set Registration with Regularized Dynamic Graph CNNs for Large Lung Motion in COPD Patients

Deformable registration continues to be one of the key challenges in med...

A training-free recursive multiresolution framework for diffeomorphic deformable image registration

Diffeomorphic deformable image registration is one of the crucial tasks ...

Classification of Medical Images and Illustrations in the Biomedical Literature Using Synergic Deep Learning

The Classification of medical images and illustrations in the literature...

Deep Q Learning Driven CT Pancreas Segmentation with Geometry-Aware U-Net

Segmentation of pancreas is important for medical image analysis, yet it...

Medical Image Segmentation and Localization using Deformable Templates

This paper presents deformable templates as a tool for segmentation and ...