Deformable Deep Convolutional Generative Adversarial Network in Microwave Based Hand Gesture Recognition System
Traditional vision-based hand gesture recognition systems is limited under dark circumstances. In this paper, we build a hand gesture recognition system based on microwave transceiver and deep learning algorithm. A Doppler radar sensor with dual receiving channels at 5.8GHz is used to acquire a big database of hand gestures signals. The received hand gesture signals are then processed with time-frequency analysis. Based on these big databases of hand gesture, we propose a new machine learning architecture called deformable deep convolutional generative adversarial network. Experimental results show the new architecture can upgrade the recognition rate by 10 can reduce the testing time cost by 30
READ FULL TEXT