DeepSaDe: Learning Neural Networks that Guarantee Domain Constraint Satisfaction

03/02/2023
by   Kshitij Goyal, et al.
0

As machine learning models, specifically neural networks, are becoming increasingly popular, there are concerns regarding their trustworthiness, specially in safety-critical applications, e.g. actions of an autonomous vehicle must be safe. There are approaches that can train neural networks where such domain requirements are enforced as constraints, but they either cannot guarantee that the constraint will be satisfied by all possible predictions (even on unseen data) or they are limited in the type of constraints that can be enforced. In this paper, we present an approach to train neural networks which can enforce a wide variety of constraints and guarantee that the constraint is satisfied by all possible predictions. The approach builds on earlier work where learning linear models is formulated as a constraint satisfaction problem (CSP). To make this idea applicable to neural networks, two crucial new elements are added: constraint propagation over the network layers, and weight updates based on a mix of gradient descent and CSP solving. Evaluation on various machine learning tasks demonstrates that our approach is flexible enough to enforce a wide variety of domain constraints and is able to guarantee them in neural networks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset