DeepRED: Deep Image Prior Powered by RED
Inverse problems in imaging are extensively studied, with a variety of strategies, tools, and theory that have been accumulated over the years. Recently, this field has been immensely influenced by the emergence of deep-learning techniques. One such contribution, which is the focus of this paper, is the Deep Image Prior (DIP) work by Ulyanov, Vedaldi, and Lempitsky (2018). DIP offers a new approach towards the regularization of inverse problems, obtained by forcing the recovered image to be synthesized from a given deep architecture. While DIP has been shown to be effective, its results fall short when compared to state-of-the-art alternatives. In this work, we aim to boost DIP by adding an explicit prior, which enriches the overall regularization effect in order to lead to better-recovered images. More specifically, we propose to bring-in the concept of Regularization by Denoising (RED), which leverages existing denoisers for regularizing inverse problems. Our work shows how the two (DeepRED) can be merged to a highly effective recovery process while avoiding the need to differentiate the chosen denoiser, and leading to very effective results, demonstrated for several tested inverse problems.
READ FULL TEXT