DeepMind Control Suite

01/02/2018
by   Yuval Tassa, et al.
0

The DeepMind Control Suite is a set of continuous control tasks with a standardised structure and interpretable rewards, intended to serve as performance benchmarks for reinforcement learning agents. The tasks are written in Python and powered by the MuJoCo physics engine, making them easy to use and modify. We include benchmarks for several learning algorithms. The Control Suite is publicly available at https://www.github.com/deepmind/dm_control . A video summary of all tasks is available at http://youtu.be/rAai4QzcYbs .

READ FULL TEXT

page 1

page 5

page 6

page 7

page 10

page 17

page 18

page 19

06/22/2020

dm_control: Software and Tasks for Continuous Control

The dm_control software package is a collection of Python libraries and ...
11/04/2022

Benchmarking Quality-Diversity Algorithms on Neuroevolution for Reinforcement Learning

We present a Quality-Diversity benchmark suite for Deep Neuroevolution i...
02/25/2019

Marathon Environments: Multi-Agent Continuous Control Benchmarks in a Modern Video Game Engine

Recent advances in deep reinforcement learning in the paradigm of locomo...
08/09/2019

Behaviour Suite for Reinforcement Learning

This paper introduces the Behaviour Suite for Reinforcement Learning, or...
12/02/2020

DERAIL: Diagnostic Environments for Reward And Imitation Learning

The objective of many real-world tasks is complex and difficult to proce...
10/19/2022

When to Ask for Help: Proactive Interventions in Autonomous Reinforcement Learning

A long-term goal of reinforcement learning is to design agents that can ...
06/24/2021

Brax – A Differentiable Physics Engine for Large Scale Rigid Body Simulation

We present Brax, an open source library for rigid body simulation with a...

Code Repositories

dm_control

DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo.


view repo

Please sign up or login with your details

Forgot password? Click here to reset