DeepCount: Crowd Counting with WiFi via Deep Learning

03/13/2019
by   Shangqing Liu, et al.
0

Recently, the research of wireless sensing has achieved more intelligent results, and the intelligent sensing of human location and activity can be realized by means of WiFi devices. However, most of the current human environment perception work is limited to a single person's environment, because the environment in which multiple people exist is more complicated than the environment in which a single person exists. In order to solve the problem of human behavior perception in a multi-human environment, we first proposed a solution to achieve crowd counting (inferred population) using deep learning in a closed environment with WIFI signals - DeepCout, which is the first in a multi-human environment. step. Since the use of WiFi to directly count the crowd is too complicated, we use deep learning to solve this problem, use Convolutional Neural Network(CNN) to automatically extract the relationship between the number of people and the channel, and use Long Short Term Memory(LSTM) to resolve the dependencies of number of people and Channel State Information(CSI) . To overcome the massive labelled data required by deep learning method, we add an online learning mechanism to determine whether or not someone is entering/leaving the room by activity recognition model, so as to correct the deep learning model in the fine-tune stage, which, in turn, reduces the required training data and make our method evolving over time. The system of DeepCount is performed and evaluated on the commercial WiFi devices. By massive training samples, our end-to-end learning approach can achieve an average of 86.4 Meanwhile, by the amendment mechanism of the activity recognition model to judge door switch to get the variance of crowd to amend deep learning predicted results, the accuracy is up to 90

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset