Deep trip generation with graph neural networks for bike sharing system expansion

03/20/2023
by   Yuebing Liang, et al.
0

Bike sharing is emerging globally as an active, convenient, and sustainable mode of transportation. To plan successful bike-sharing systems (BSSs), many cities start from a small-scale pilot and gradually expand the system to cover more areas. For station-based BSSs, this means planning new stations based on existing ones over time, which requires prediction of the number of trips generated by these new stations across the whole system. Previous studies typically rely on relatively simple regression or machine learning models, which are limited in capturing complex spatial relationships. Despite the growing literature in deep learning methods for travel demand prediction, they are mostly developed for short-term prediction based on time series data, assuming no structural changes to the system. In this study, we focus on the trip generation problem for BSS expansion, and propose a graph neural network (GNN) approach to predicting the station-level demand based on multi-source urban built environment data. Specifically, it constructs multiple localized graphs centered on each target station and uses attention mechanisms to learn the correlation weights between stations. We further illustrate that the proposed approach can be regarded as a generalized spatial regression model, indicating the commonalities between spatial regression and GNNs. The model is evaluated based on realistic experiments using multi-year BSS data from New York City, and the results validate the superior performance of our approach compared to existing methods. We also demonstrate the interpretability of the model for uncovering the effects of built environment features and spatial interactions between stations, which can provide strategic guidance for BSS station location selection and capacity planning.

READ FULL TEXT

page 14

page 15

research
03/18/2022

Bike Sharing Demand Prediction based on Knowledge Sharing across Modes: A Graph-based Deep Learning Approach

Bike sharing is an increasingly popular part of urban transportation sys...
research
08/13/2020

Towards Dynamic Urban Bike Usage Prediction for Station Network Reconfiguration

Bike sharing has become one of the major choices of transportation for r...
research
09/05/2021

Urban Fire Station Location Planning: A Systematic Approach using Predicted Demand and Service Quality Index

In this article, we propose a systematic approach for fire station locat...
research
01/03/2022

A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems

Bike Sharing Systems (BSSs) are emerging as an innovative transportation...
research
11/01/2021

Transfer Learning Approach to Bicycle-sharing Systems' Station Location Planning using OpenStreetMap Data

Bicycle-sharing systems (BSS) have become a daily reality for many citiz...
research
06/24/2023

Multi-task multi-station earthquake monitoring: An all-in-one seismic Phase picking, Location, and Association Network (PLAN)

Earthquake monitoring is vital for understanding the physics of earthqua...
research
12/13/2017

Predicting Station-level Hourly Demands in a Large-scale Bike-sharing Network: A Graph Convolutional Neural Network Approach

Bike sharing is a vital piece in a modern multi-modal transportation sys...

Please sign up or login with your details

Forgot password? Click here to reset