Deep Transfer Learning for Land Use Land Cover Classification: A Comparative Study

10/06/2021
by   Raoof Naushad, et al.
19

Efficiently implementing remote sensing image classification with high spatial resolution imagery can provide great significant value in land-use land-cover classification (LULC). The developments in remote sensing and deep learning technologies have facilitated the extraction of spatiotemporal information for LULC classification. Moreover, the diverse disciplines of science, including remote sensing, have utilised tremendous improvements in image classification by CNNs with Transfer Learning. In this study, instead of training CNNs from scratch, we make use of transfer learning to fine-tune pre-trained networks a) VGG16 and b) Wide Residual Networks (WRNs), by replacing the final layer with additional layers, for LULC classification with EuroSAT dataset. Further, the performance and computational time were compared and optimized with techniques like early stopping, gradient clipping, adaptive learning rates and data augmentation. With the proposed approaches we were able to address the limited-data problem and achieved very good accuracy. Comprehensive comparisons over the EuroSAT RGB version benchmark have successfully established that our method outperforms the previous best-stated results, with a significant improvement over the accuracy from 98.57 99.17

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro