Deep Stock: training and trading scheme using deep learning

04/28/2023
by   Sungwoo Kang, et al.
0

Despite the efficient market hypothesis, many studies suggest the existence of inefficiencies in the stock market, leading to the development of techniques to gain above-market returns, known as alpha. Systematic trading has undergone significant advances in recent decades, with deep learning emerging as a powerful tool for analyzing and predicting market behavior. In this paper, we propose a model inspired by professional traders that look at stock prices of the previous 600 days and predicts whether the stock price rises or falls by a certain percentage within the next D days. Our model, called DeepStock, uses Resnet's skip connections and logits to increase the probability of a model in a trading scheme. We test our model on both the Korean and US stock markets and achieve a profit of N% on Korea market, which is M% above the market return, and profit of A% on US market, which is B% above the market return.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro