Deep Single Image Manipulation

07/02/2020
by   Yael Vinker, et al.
0

Image manipulation has attracted much research over the years due to the popularity and commercial importance of the task. In recent years, deep neural network methods have been proposed for many image manipulation tasks. A major issue with deep methods is the need to train on large amounts of data from the same distribution as the target image, whereas collecting datasets encompassing the entire long-tail of images is impossible. In this paper, we demonstrate that simply training a conditional adversarial generator on the single target image is sufficient for performing complex image manipulations. We find that the key for enabling single image training is extensive augmentation of the input image and provide a novel augmentation method. Our network learns to map between a primitive representation of the image (e.g. edges) to the image itself. At manipulation time, our generator allows for making general image changes by modifying the primitive input representation and mapping it through the network. We extensively evaluate our method and find that it provides remarkable performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset