Deep Similarity Learning for Sports Team Ranking

03/25/2021 ∙ by Daniel Yazbek, et al. ∙ 0

Sports data is more readily available and consequently, there has been an increase in the amount of sports analysis, predictions and rankings in the literature. Sports are unique in their respective stochastic nature, making analysis, and accurate predictions valuable to those involved in the sport. In response, we focus on Siamese Neural Networks (SNN) in unison with LightGBM and XGBoost models, to predict the importance of matches and to rank teams in Rugby and Basketball. Six models were developed and compared, a LightGBM, a XGBoost, a LightGBM (Contrastive Loss), LightGBM (Triplet Loss), a XGBoost (Contrastive Loss), XGBoost (Triplet Loss). The models that utilise a Triplet loss function perform better than those using Contrastive loss. It is clear LightGBM (Triplet loss) is the most effective model in ranking the NBA, producing a state of the art (SOTA) mAP (0.867) and NDCG (0.98) respectively. The SNN (Triplet loss) most effectively predicted the Super 15 Rugby, yielding the SOTA mAP (0.921), NDCG (0.983), and r_s (0.793). Triplet loss produces the best overall results displaying the value of learning representations/embeddings for prediction and ranking of sports. Overall there is not a single consistent best performing model across the two sports indicating that other Ranking models should be considered in the future.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.