Deep Sets
In this paper, we study the problem of designing objective functions for machine learning problems defined on finite sets. In contrast to traditional objective functions defined for machine learning problems operating on finite dimensional vectors, the new objective functions we propose are operating on finite sets and are invariant to permutations. Such problems are widespread, ranging from estimation of population statistics poczos13aistats, via anomaly detection in piezometer data of embankment dams Jung15Exploration, to cosmology Ntampaka16Dynamical,Ravanbakhsh16ICML1. Our main theorem characterizes the permutation invariant objective functions and provides a family of functions to which any permutation invariant objective function must belong. This family of functions has a special structure which enables us to design a deep network architecture that can operate on sets and which can be deployed on a variety of scenarios including both unsupervised and supervised learning tasks. We demonstrate the applicability of our method on population statistic estimation, point cloud classification, set expansion, and image tagging.
READ FULL TEXT